MULTIPLE INTEGRALS - TASKS (IV PART)

CALCULATING THE VOLUME USING DOUBLE INTEGRAL

Before you start with the study of this file, be sure to see the file "Some areas in R^3 ". In most of the tasks here is necessary to draw a picture in space, and then when you find the intersection, go down problem in the plane to determine limits.

To remind ourselves of the theoretical part:

Cylinder, which limits on top is the continuous area defined by the equation $z = z \, (x, y)$, on bottom plane z = 0, and around cylindrical area, which cuts a plane xOy over area D, has a volume:

$$\mathbf{V} = \iint\limits_{D} z(x, y) dx dy$$

Thus, the double integral calculates the volume of the **geometric** body below the area within certain limits. Here are some examples:

Example 1.

Find a volume limited with the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and x=0, y=0, z=0

Solution:

First, we must draw picture in space:

Now ,the problem 'go down' in xOy plane (ie z = 0) and get

It is clear that x goes from 0 to a.

Determine the line through a and b, since y first "attack" on the x = 0, and then on this line:

2

$$\frac{x}{a} + \frac{y}{b} = 1 \longrightarrow \frac{y}{b} = 1 - \frac{x}{a} \longrightarrow y = b\left(1 - \frac{x}{a}\right) \longrightarrow \boxed{0 \le y \le b\left(1 - \frac{x}{a}\right)}$$

We get:
$$D: \begin{cases} 0 \le x \le a \\ 0 \le y \le b \left(1 - \frac{x}{a}\right) \end{cases}$$

Now just calculate volume using the formula:

$$V = \iint_{D} z(x, y) dx dy = \int_{0}^{a} dx \int_{0}^{b(1 - \frac{x}{a})} c(1 - \frac{x}{a} - \frac{y}{b}) dy$$

Solve first:

$$\int c(1 - \frac{x}{a} - \frac{y}{b}) dy = c(y - \frac{x}{a}y - \frac{y^2}{2b})$$

$$c(y - \frac{x}{a}y - \frac{y^2}{2b}) \begin{vmatrix} b(1 - \frac{x}{a}) = c \\ 0 \end{vmatrix} = c \left(b(1 - \frac{x}{a}) - \frac{x}{a}b(1 - \frac{x}{a}) - \frac{[b(1 - \frac{x}{a})]^2}{2b} \right) = c \left(b - \frac{bx}{a} - \frac{bx}{a} + \frac{bx^2}{a^2} - \frac{b^2(1 - \frac{2x}{a} + \frac{x^2}{a^2})}{2b} \right) = c \left(b - \frac{2bx}{a} + \frac{bx^2}{a^2} - \frac{b}{2} + \frac{bx}{a} - \frac{bx^2}{2a^2} \right) = c \left(\frac{b}{2} - \frac{2bx}{2a} + \frac{bx^2}{2a^2} \right) = \frac{cb}{2} \left(1 - \frac{2x}{a} + \frac{x^2}{a^2} \right)$$

Let us return to integral:

$$V = \iint_{D} z(x, y) dx dy = \int_{0}^{a} \frac{cb}{2} \left(1 - \frac{2x}{a} + \frac{x^{2}}{a^{2}} \right) dx =$$

$$= \frac{cb}{2} \left(x - \frac{2x^{2}}{2a} + \frac{x^{3}}{3a^{2}} \right) \begin{vmatrix} a - \frac{cb}{2} \left(a - \frac{a^{2}}{a} + \frac{a^{3}}{3a^{2}} \right) = \frac{cb}{2} \cdot \frac{a}{3} = \boxed{\frac{abc}{6}}$$

Volume that we have is actually the volume of pyramid! Let's look at picture again:

Of course, this is much easier to calculate the volume over conventional formula (from high school and even primary).

If we take that the base is triangle ABO, its area is $B = \frac{ab}{2}$, The height of the pyramid is obviously c, so we have:

$$V = \frac{1}{3}BH = \frac{1}{3}\frac{ab}{2} \cdot c = \boxed{\frac{abc}{6}}$$

Example 2.

Calculate the volume of the **geometric** body limited with $z = x^2 + y^2$ and z = x + y

Solution:

Here is a paraboloid $z = x^2 + y^2$ and plane z = x + y which intersects it.

Search volume is the volume inside the paraboloid, that on the top has a plane z = x + y

$$x^{2} + y^{2} = x + y$$

$$x^{2} - x + y^{2} - y = 0$$

$$x^{2} - x + \frac{1}{4} + y^{2} - y + \frac{1}{4} = \frac{1}{4} + \frac{1}{4}$$

$$\left(x - \frac{1}{2}\right)^{2} + \left(y - \frac{1}{2}\right)^{2} = \frac{1}{2}$$

We introduce polar coordinates:

$$x = r\cos\varphi + \frac{1}{2}$$

$$y = r\sin\varphi + \frac{1}{2}$$

$$\Rightarrow |J| = r$$

$$\left(r\cos\varphi + \frac{1}{2} - \frac{1}{2}\right)^2 + \left(r\sin\varphi + \frac{1}{2} - \frac{1}{2}\right)^2 = \frac{1}{2}$$

$$r^2 = \frac{1}{2} \rightarrow r = \frac{1}{\sqrt{2}} \rightarrow \boxed{0 \le r \le \frac{1}{\sqrt{2}}}$$

Let's look at the picture in the plane once again

Angle touring the whole circle, so $0 \le \varphi \le 2\pi$

$$V = \iint_{D} (z_1(x, y) - z_2(x, y)) dxdy$$

$$(z_1(x,y) - z_2(x,y)) = (x + y - (x^2 + y^2)) = -(x^2 + y^2 - x - y) = -(x^2 - x + \frac{1}{4} + y^2 - y + \frac{1}{4} - \frac{1}{2}) =$$

$$= -((x - \frac{1}{2})^2 + (y - \frac{1}{2})^2 - \frac{1}{2}) = \frac{1}{2} - ((x - \frac{1}{2})^2 + (y - \frac{1}{2})^2) = \frac{1}{2} - r^2$$

$$V = \iint_{D} \left(z_{1}(x, y) - z_{2}(x, y) \right) dx dy = \int_{0}^{2\pi} d\varphi \int_{0}^{\frac{1}{\sqrt{2}}} \left(\frac{1}{2} - r^{2} \right) r dr = \int_{0}^{2\pi} d\varphi \int_{0}^{\frac{1}{\sqrt{2}}} \left(\frac{r}{2} - r^{3} \right) dr$$

$$= 2\pi \cdot \left(\frac{r^{2}}{4} - \frac{r^{4}}{4} \right) \left| \frac{1}{\sqrt{2}} = 2\pi \cdot \left(\frac{\left(\frac{1}{\sqrt{2}} \right)^{2}}{4} - \frac{\left(\frac{1}{\sqrt{2}} \right)^{4}}{4} \right) \right| = 2\pi \cdot \left(\frac{1}{8} - \frac{1}{16} \right) = 2\pi \cdot \frac{1}{16} = \boxed{\frac{\pi}{8}}$$

Example 3.

Calculate the volume limited with $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ and $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$ if (z > 0, a > 0, b > 0, c > 0)

Solution:

This is about the ellipsoid and the cone. Let's look at the picture:

Search volume is between the two bodies. From above the ellipsoid and the bottom cone!

$$V = \iint_{D} \left(z_1(x, y) - z_2(x, y) \right) dxdy$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{1}{2}$$

We introduce elliptic coordinates:

$$\left. \begin{array}{l} x = ar\cos\varphi \\ y = br\sin\varphi \end{array} \right\} \rightarrow \left| J \right| = abr$$

Let's look at the picture in the plane z = 0 (ellipse)

It is obvious that the angle taken full circle : $0 \le \varphi \le 2\pi$

$$(r\cos\varphi)^2 + (r\sin\varphi)^2 = \frac{1}{2}$$
$$r^2 = \frac{1}{2} \to r = \frac{1}{\sqrt{2}} \to \boxed{0 \le r \le \frac{1}{\sqrt{2}}}$$

Before we start the calculation of volume we have to express z in both equations:

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 1$$

$$\frac{z^{2}}{c^{2}} = 1 - \left(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}\right)$$

$$z^{2} = c^{2} \cdot \left[1 - \left(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}\right)\right]$$

$$z = \pm \sqrt{c^{2} \cdot \left[1 - \left(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}\right)\right]}$$

$$z = \pm \sqrt{c^{2} \cdot \left[1 - \left(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}\right)\right]}$$

$$z = \pm \sqrt{c^{2} \cdot \left[1 - \left(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}\right)\right]}$$

$$z = \pm \sqrt{c^{2} \cdot \left[1 - \left(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}\right)\right]}$$

$$z = \pm c \cdot \sqrt{1 - \left(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}\right)}$$

Now here we put the elliptical coordinates:

$$z_1 = +c \cdot \sqrt{1 - \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)}$$

$$z_2 = +c \cdot \sqrt{\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)}$$

$$z_1 = +c \cdot \sqrt{1 - r^2}$$

$$z_2 = +c \cdot r$$

Now:

$$V = \iint_{D} \left(z_{1}(x, y) - z_{2}(x, y) \right) dx dy = \int_{0}^{2\pi} d\varphi \int_{0}^{\frac{1}{\sqrt{2}}} \left(c\sqrt{1 - r^{2}} - cr \right) abr dr = abc \int_{0}^{2\pi} d\varphi \int_{0}^{\frac{1}{\sqrt{2}}} \left(r\sqrt{1 - r^{2}} - r^{2} \right) dr$$

Now this integral is not difficult to solve: In first we have replacement $\begin{vmatrix} 1 - r^2 = t^2 \\ -2rdr = 2tdt \\ rdr = -tdt \end{vmatrix}$, and second is in

table of intergals.

We get the volume:
$$V = \frac{abc \cdot \pi}{3} \left(2 - \sqrt{2}\right)$$

Example 4.

Calculate the volume limited with $z = x^2 + y^2$, $x^2 + y^2 = x$, $x^2 + y^2 = 2x$, z = 0.

Solution:

Here is a paraboloid which cuts out two cones

$$x^{2} + y^{2} = x$$

$$x^{2} - x + y^{2} = 0$$

$$x^{2} - x + \frac{1}{4} - \frac{1}{4} + y^{2} = 0$$

$$\left(x - \frac{1}{2}\right)^{2} + y^{2} = \frac{1}{4}$$

$$x^{2} + y^{2} = 2x$$

$$x^{2} - 2x + y^{2} = 0$$

$$x^{2} - 2x + 1 + y^{2} = 1$$

$$(x - 1)^{2} + y^{2} = 1$$

Let's look at the picture:

In z = 0 is:

Now we take polar coordinates and determines the boundaries:

8

$$|x = r \cos \varphi$$

$$y = r \sin \varphi$$
 $\rightarrow |J| = r$

$$x^2 + y^2 = x$$
 $x^2 + y^2 = 2x$
 $r^2 = r \cos \varphi$ and $r^2 = 2r \cos \varphi$ so: $\cos \varphi \le r \le 2 \cos \varphi$
 $r = \cos \varphi$ $r = 2 \cos \varphi$

Angle is at the first and fourth quadrants (see picture)

$$-\frac{\pi}{2} \le \varphi \le \frac{\pi}{2}$$

$$V = \iint_{D} z(x, y) dx dy = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{\cos\varphi}^{2\cos\varphi} r^{2} \cdot r dr = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{r^{4}}{4} \left| \frac{2c \cos\varphi}{c \cos\varphi} d\varphi \right| = \frac{15}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{4}\varphi d\varphi$$

Since there is symmetry with respect to the x-axis, ie the two parts of equal volume are, the easier it is to:

$$V = \frac{15}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^4 \varphi d\varphi = 2 \cdot \frac{15}{4} \int_{0}^{\frac{\pi}{2}} \cos^4 \varphi d\varphi = \frac{15}{2} \int_{0}^{\frac{\pi}{2}} \cos^4 \varphi d\varphi$$

Now, use a formula from trigonometry:

$$\cos^{4} \varphi = \cos^{2} \varphi \cdot \cos^{2} \varphi = \cos^{2} \varphi \cdot (1 - \sin^{2} \varphi) = \cos^{2} \varphi - \sin^{2} \varphi \cos^{2} \varphi =$$

$$= \cos^{2} \varphi - \frac{4}{4} \sin^{2} \varphi \cos^{2} \varphi = \cos^{2} \varphi - \frac{1}{4} \sin^{2} 2\varphi = \frac{1 + \cos 2\varphi}{2} - \frac{1}{4} \frac{1 - \cos 4\varphi}{2} =$$

$$= \frac{1 + \cos 2\varphi}{2} - \frac{1 - \cos 4\varphi}{8}$$

Now it is easy to solve this integral ...

We get the solution:

$$V = \frac{45\pi}{32}$$

Example 5.

Calculate the volume limited with:

$$x^{2} + 4z^{2} = 2y$$
 and $x^{2} + 4z^{2} = (y - 4)^{2}$ if $0 \le y \le 4$

Solution:

Watch out, bodies are now given along the z - axis but along the y - axis!

It does not change things, thinking the same thing, only slightly correct the formula....

To find cross-sections:

$$2y = (y-4)^{2}$$

$$y^{2} - 8y + 16 - 2y = 0$$

$$y^{2} - 10y + 16 = 0$$

$$y_{1,2} = \frac{10 \pm \sqrt{100 - 64}}{2} = \frac{10 \pm 6}{2} \rightarrow y_{1} = 8 \land y_{2} = 2$$

Because $0 \le y \le 4$ we take that y = 2.

Then we have :

$$x^{2} + 4z^{2} = 2y \land y = 2$$
$$x^{2} + 4z^{2} = 4$$

$$\frac{x^2}{4} + z^2 = 1$$
 This is our area D in the plane y = 0

We have an ellipse:

We take:

$$|z - r \cos \varphi|$$

$$z = r \sin \varphi$$

$$\Rightarrow |J| = 2r$$
 then:
$$\frac{x^2}{4} + z^2 = 1 \Rightarrow \frac{(2r \cos \varphi)^2}{4} + (r \sin \varphi)^2 = 1 \Rightarrow r^2 = 1 \Rightarrow \boxed{0 \le r \le 1}$$

$$0 \le \varphi \le 2\pi$$

Express y:

$$x^{2} + 4z^{2} = (y - 4)^{2}$$

$$y - 4 = \pm \sqrt{x^{2} + 4z^{2}}$$

$$y_{1} = 4 - \sqrt{x^{2} + 4z^{2}}$$

$$y_{2} = \frac{x^{2} + 4z^{2}}{2}$$

$$V = \iint_{D} (y_{1}(x,z) - y_{2}(x,z)) dxdz = \iint_{D} \left(4 - \sqrt{x^{2} + 4z^{2}} - \frac{x^{2} + 4z^{2}}{2} \right) dxdz =$$

$$= \iint_{D} \left(4 - \sqrt{4\left(\frac{x^{2}}{4} + z^{2}\right)} - \frac{4\left(\frac{x^{2}}{4} + z^{2}\right)}{2} \right) dxdz = \iint_{D} \left(4 - 2\sqrt{\left(\frac{x^{2}}{4} + z^{2}\right)} - 2\left(\frac{x^{2}}{4} + z^{2}\right) \right) dxdz$$

polar coordinates:

$$\begin{split} V &= \iint\limits_{D} \left(4 - 2\sqrt{\left(\frac{x^2}{4} + z^2\right)} - 2\left(\frac{x^2}{4} + z^2\right) \right) dxdz = \int\limits_{0}^{2\pi} d\varphi \int\limits_{0}^{1} \left(4 - r - 2r^2 \right) r dr = \\ &= 2\varphi \int\limits_{0}^{1} \left(4r - r^2 - 2r^3 \right) dr = 2\varphi \cdot \left(4\frac{r^2}{2} - \frac{r^3}{3} - 2\frac{r^4}{4} \right) \bigg|_{0}^{1} = 2\varphi \cdot \left(4\frac{1}{2} - \frac{1}{3} - 2\frac{1}{4} \right) = 2\varphi \cdot \left(2 - \frac{1}{3} - \frac{1}{2} \right) \\ V &= 2\varphi \cdot \frac{5}{6} \rightarrow V = \frac{10\pi}{3} \end{split}$$