MULTIPLE INTEGRALS - TASKS (IV PART)

CALCULATING THE VOLUME USING DOUBLE INTEGRAL

Before you start with the study of this file , be sure to see the file “ Some areas in R*”.
In most of the tasks here is necessary to draw a picture in space, and then when you find the intersection,

go down problem in the plane to determine limits.

To remind ourselves of the theoretical part:
Cylinder, which limits on top is the continuous area defined by the equation z=1z (x, y) ,
on bottom plane z = 0, and around cylindrical area , which cuts a plane xOy over area D,

has a volume:

V= J.'[z(x, v)dxdy
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Thus, the double integral calculates the volume of the geometric body below the area within certain limits.

Here are some examples:



Example 1.

Find a volume limited with the plane Xz

and x=0, y=0, z=0
a b ¢

Solution:

First, we must draw picture in space:
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Now ,the problem 'go down' in xOy plane (ie z = 0) and get
y

It is clear that x goes from O to a.

Determine the line through a and b, since y first “attack™ on the x = 0, and then on this line:
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Now just calculate volume using the formula:



. b(l—g)
V= J;;[z(x, y)dxdy = bfdx J- c(1 —%—%)dy
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Solve first:
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Let us return to integral:
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Volume that we have is actually the volume of pyramid!
Let's look at picture again:

Of course, this is much easier to calculate the volume over conventional formula (from high school and even
primary).

If we take that the base is triangle ABO, its area is B = a_2b , The height of the pyramid is obviously ¢, so we have:




Example 2.
Calculate the volume of the geometric body limited with z=x>+)* and z=x+y
Solution:

Here is a paraboloid z = x” + »* and plane z = x + y which intersects it.

z=x+Yy
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We introduce polar coordinates:
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Let's look at the picture in the plane once again ....

Angle touring the whole circle,so 0<@p <27

V= [[ (2.6 9) = 2,(x, ) dxdy
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Example 3.
. Xy 7 x>y .
Calculate the volume limited with —2+?+—2:1 and —2+?=—2 if (z>0,a>0,b>0,c¢>0)
a c a c

Solution:

This is about the ellipsoid and the cone. Let's look at the picture:
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Search volume is between the two bodies. From above the ellipsoid and the bottom cone!

V= [[ (2106 0)=2,(x, »)) dxdy
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We introduce elliptic coordinates:

X =arcoso
} —>|J|=abr
y=brsing

Let's look at the picture in the plane z = 0 (ellipse)

It is obvious that the angle taken full circle : 0 <@ <27
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Now:

V= ,U(Zl (x,y)—2z,(x, y))dxdy = Td T(C\/l r —cr)abrdr = abczfd
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Now this integral is not difficult to solve: In first we have replacement |-2rdr = 2tdt| , and second is in
rdr = —tdt

table of intergals.

We get the volume: V= ab;- d (2 - \/5)




Example 4.
Calculate the volume limited with z=x>+)*, x>+’ =x, x’+)" =2x ,z = 0.
Solution:

Here is a paraboloid which cuts out two cones ....
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Let's look at the picture :
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Inz=20 is:

Now we take polar coordinates and determines the boundaries:



x:r09s¢}_)|J|:r
y=rsing

x4y =x X'+t =2x
r’=rcosg and r> =2rcosg  so: |cos¢£r£2cos¢)
r=CcosQ r=2cos@

Angle is at the first and fourth quadrants (see picture)
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Since there is symmetry with respect to the x-axis, ie the two parts of equal volume are, the easier it is
to:

5% 153 153
V=—]cos’odp=2-—|cos"odp =—cos"od
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Now, use a formula from trigonometry:

cos’ @ =cos’ ¢-cos’ ¢ =cos’ @-(1—sin’ @) =cos’ p—sin’ pcos’ p =

= cos’ go—zsin2 @cos’ ¢ = cos’ go—lsin2 20 = 1+C352¢ —%1_0354(0 =
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Now it is easy to solve this integral ...

We get the solution:
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Example 5.

Calculate the volume limited with:

x’+4z° =2y and x*+4z°=(y-4)> if 0<y<4

Solution:

Watch out, bodies are now given along the z - axis but along the y - axis!

It does not change things, thinking the same thing, only slightly correct the formula....

¥ +4zr=(y-4)°

xt+4z2 =2y
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To find cross-sections:

2y=(y-4)’
y —8y+16-2y=0
y* =10y +16=0
10+£4/100—64 10+6
Vip = > = 5 >y =8Ay,=2

Because 0<y<4 we takethat y =2.
Then we have

X' +4z2° =2yAy=2

x> +4z2 =4

% +z” =1| This is our area D in the planey = 0
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We have an ellipse:

We take:

xX=2rcose
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Express y:
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